Journal of Clinical Medicine Research, ISSN 1918-3003 print, 1918-3011 online, Open Access
Article copyright, the authors; Journal compilation copyright, J Clin Med Res and Elmer Press Inc
Journal website https://jocmr.elmerjournals.com

Original Article

Volume 17, Number 4, April 2025, pages 200-207


Evaluating Postural Sway in the Elderly Using Inertial Measurement Units: A Study on Center of Mass Measurements via Accelerometers and Gyroscopes

Figures

Figure 1.
Figure 1. The diagram for the experimental procedure.
Figure 2.
Figure 2. Bar graph depicting COM postural sway in accelerometer (RMS, RANGE, SA, and SD) ranging from a variety of increasingly challenging conditions of base of support in (a) AP and (b) ML planes. COM: center of mass; RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.
Figure 3.
Figure 3. Bar graph depicted COM postural sway in gyroscope (RMS, RANGE, SA, and SD) ranging from a variety of increasingly challenging conditions of base of support in (a) AP and (b) ML planes. COM: center of mass; RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.

Tables

Table 1. Demographic and Clinical Data
 
CharacteristicMean ± SDMin - Max
BMI: body mass index; SD: standard deviation.
Male/female, N (%)58 (50.90%)/56 (49.10%)
Age (years)65.90 ± 6.6060.00 - 84.00
Weight (kg)57.40 ± 9.4038.00 - 90.00
Height (cm)158.80 ± 7.70145.00 - 175.00
BMI (kg/m2)22.80 ± 3.8015.80 - 40.00

 

Table 2. AP and ML Planes of Accelerometer-Derived Sway Metrics for Each Test Condition
 
Sensor variable-planeSOSTOTOSL
Mean ± SD (min - max)Mean ± SD (min - max)Mean ± SD (min - max)Mean ± SD (min - max)
SO: standing in a double stance; STO: semi-tandem stance; TO: tandem stance; SL: single-leg stance; RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.
RMS-AP6.79 ± 1.56 (4.14 - 14.73)7.59 ± 2.39 (4.79 - 25.31)8.31 ± 2.32 (4.49 - 17.50)16.43 ± 8.44 (6.99 - 43.68)
RANGE-AP47.49 ± 22.84 (27.30 - 217.04)54.61 ± 36.99 (30.23 - 340.39)56.41 ± 18.85 (27.64 - 126.31)132.22 ± 88.60 (43.84 - 513.53)
SD-AP1,827.48 ± 442.49 (155.36 - 4,125.70)2,051.46 ± 539.91 (1,247.46 - 5,208.08)2,265.73 ± 675.61 (128.78 - 4,718.57)3,664.93 ± 1,697.59 (263.45 - 10,243.82)
SA-AP105.44 ± 23.84 (9.64 - 216.12)117.38 ± 29.28 (75.57 - 287.88)129.16 ± 37.58 (7.45 - 270.44)203.91 ± 95.40 (16.64 - 562.37)
RMS-ML6.42 ± 1.26 (3.98 - 11.74)7.15 ± 2.32 (3.98 - 26.42)8.13 ± 2.24 (4.61 - 21.80)16.92 ± 9.16 (6.79 - 50.78)
RANGE-ML44.34 ± 18.19 (23.00 - 162.58)51.20 ± 36.15 (23.00 - 368.64)55.70 ± 20.72 (27.48 - 164.75)138.77 ± 95.19 (41.48 - 463.85)
SD-ML1,715.77 ± 371.94 (172.02 - 3,150.02)1,920.74 ± 476.83 (1,041.54 - 5,113.17)2,220.84 ± 638.73 (151.54 - 6,118.31)3,715.43 ± 1,062.16 (224.74 - 10,440.58)
SA-ML99.93 ± 20.21 (10.87 - 183.46)110.64 ± 26.26 (63.68 - 285.77)126.48 ± 35.79 (8.49 - 344.33)205.56 ± 88.28 (14.72 - 575.24)

 

Table 3. AP and ML Planes of Gyroscope-Derived Sway Metrics for Each Test Condition
 
Sensor variable-planeSOSTOTOSL
Mean ± SD (min - max)Mean ± SD (min - max)Mean ± SD (min - max)Mean ± SD (min - max)
ST: standing in a double stance; STO: semi-tandem stance; TO: tandem stance; SL: single-leg stance; RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.
RMS-AP13.76 ± 6.60 (6.60 - 37.87)15.89 ± 7.80 (6.60 - 57.53)18.08 ± 7.53 (7.38 - 49.57)48.52 ± 38.48 (13.33 - 221.85)
RANGE-AP100.68 ± 77.87 (35.78 - 428.28)123.64 ± 106.13 (35.78 - 809.96)131.41 ± 79.71 (404.35 - 479.31)368.33 ± 314.66 (91.81 - 2,030.45)
SD-AP3,927.88 ± 1,702.50 (278.63 - 10,457.95)4,480.53 ± 1,812.35 (1,965.70 - 11,185.88)5,176.23 ± 2,027.73 (309.03 - 14,579.99)10,358.00 ± 5,467.50 (1,805.89 - 29,778.82)
SA-AP209.19 ± 91.48 (15.20 - 549.83)237.03 ± 96.96 (108.02 - 604.03)274.22 ± 109.74 (16.39 - 755.50)542.40 ± 288.58 (98.16 - 1,608.70)
RMS-ML12.31 ± 6.84 (5.91 - 52.28)18.07 ± 14.11 (5.91 - 116.08)25.48 ± 13.57 (7.41 - 88.73)64.98 ± 39.69 (16.49 - 193.58)
RANGE-ML94.32 ± 90.73 (33.13 - 665.48)141.74 ± 166.90 (36.20 - 1,265.98)182.92 ± 115.91 (43.99 - 720.27)467.52 ± 324.89 (124.74 - 1,944.65)
SD-ML3,452.58 ± 1,618.41 (212.47 - 13,451.28)4,989.07 ± 2,760.91 (1,712.87 - 19,905.53)7,346.36 ± 3,819.67 (566.10 - 25,711.87)15,186.71 ± 7,620.50 (1,418.84 - 42,005.72)
SA-ML180.95 ± 81.34 (11.95 - 681.07)258.82 ± 140.16 (93.46 - 1,024.37)378.90 ± 195.82 (29.87 - 1,339.51)778.13 ± 391.17 (76.09 - 2,170.28)

 

Table 4. Spearmen’s Rho Correlation Coefficient of Accelerometer Compared With Gyroscope Derived From Inertial Measurement Unit
 
Sensor variableCorrelation coefficient
rP-value
RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.
RMS-AP0.81< 0.001
RMS-ML0.86< 0.001
RANGE-AP0.82< 0.001
RANGE-ML0.84< 0.001
SD-AP0.79< 0.001
SD-ML0.85< 0.001
SA-AP0.79< 0.001
SA-ML0.85< 0.001

 

Table 5. ICC of Accelerometer Compared With Gyroscope Derived From Inertial Measurement Unit
 
Sensor variableICC
ICC(2,1)Lower 95%Upper 95%P-value
ICC: intraclass correlation coefficient; RMS: root mean square of magnitude; RANGE: summation of the range of signals; SA: sway area; SD: summation of distance; AP: anteroposterior; ML: mediolateral.
RMS-AP0.580.550.65< 0.001
RMS-ML0.540.450.62< 0.001
RANGE-AP0.640.560.70< 0.001
RANGE-ML0.600.520.67< 0.001
SD-AP0.630.560.70< 0.001
SD-ML0.500.390.59< 0.001
SA-AP0.650.580.71< 0.001
SA-ML0.520.420.60< 0.001